Ion Chamber

Radon Measurements

Theremino System Rev.1

Table of Contents

Misure con Camera a Ioni	3
Theory	3
Equipment	3
Radon in Buildings - Rn ²²²	4
Thoron from thorium mantle - Rn ²²⁰	6
Thoron decay measurement	8
Half-life calculation	9
Decay measurement data1	0

Misure con Camera a Ioni

Theory

Such a device can operate in two ways:

- as an integral detector, that is, as the current meter flowing as a result of the discharge of ions on the electrodes (current mode).
- as a differential detector, ie as counter of the charged particles that are formed in the ionization chamber (pulsed mode).

Conceptually simple, the device presents special construction differences depending on the type of radiation that must reveal. For example, because the particle α can be stopped by very thin walls, then it is necessary to place the source directly inside the chamber itself. In the case of the **Radon** the chamber it is provided with opening through which the **radon** can diffuse.

Equipment

Ion Chamber

Impulse Ion Chamber Passive Diffusion Sampling Range di mis. da 0.5 a 74000 Bq/mc (0.01 to 2000 pCi/l) Sensitivity 0.05 cpm/Bq/mc (2.0 cpm/pCi/l) Accuracy +/-50% (calibration not needed) Volume camera 1000 cc

Radon in Buildings - Rn²²²

Radon is a chemical element with symbol **Rn** and atomic number 86. It is a radioactive, colorless, odorless, tasteless noble gas, occurring naturally as a decay product of radium. Its most stable isotope, 222Rn, has a half-life of 3.8 days. Radon is one of the densest substances that remains a gas under normal conditions. It is also the only gas under normal conditions that only has radioactive isotopes, and is considered a health hazard due to its radioactivity. Intense radioactivity has also hindered chemical studies of radon and only a few compounds are known.

Radon is formed as one intermediate step in the normal radioactive decay chains through which **thorium** and **uranium** slowly decay into lead.

Measure Setup

placing the sensor on the floor and wait for a time comprised between one and two hours

🖬 Theremino Geiger - V5.2	
File Tools Sensor ty	pe Language Help About
Søve image 📸 🛛 Run 💑	Start new measure
Operation Options Logs	Radiation plut (pCi/l) 2015/06/21 09:51:55
Radiation values	
pCi/l 0.49	
8q/m3 13	
Error range 31 %	1000
Counts	
CP5 0.018	
CPM 1.08	100
Total counts 65	
Total seconds 3600	
Controls	
FIR Seconda 3600	10) Tomo
Scrol speed 5	
Plot scale 1.0	
	0.1
	0.01

Location : ground floor - Trento Sensor : Ion Chamber Result : 13 Bq/m³

🖬 Theremino Gei	ger - 1/5,2	0 0 3
File Tools	Sensor typ	pe Language Help About
Save image 📸	Run 👬	Start new measure 💑
Operation Options	t Logs	Radiation plot (pC/l) 2015/06/25 08:21:27
Radiation value	es	
pCi/l	0.22	
8q/m3	6	
Error range	25 %	1000
Counts		
CPS	0.008	
СРМ	0.48	100
Total counts	80	
Total seconds	9999	
Controls		
FIR Seconds	9999	10
Scrol speed	5	
Plot scale	1.0	
show candesto	S	
		0.1
		7.24
		p.w.

Location : first floor - Trento Sensor : Ion Chamber Result : 6 Bq/m³

Thoron from thorium mantle - Rn²²⁰

"Thoron" is the name that identifies the radon isotope with atomic weight 220. It can also be harmful to human health because, as the 222Rn is an alpha emitter and presents itself in the form of gases. The time decay of thoron is about 55 seconds, for this reason it is assumed that his presence in the home is less than the average 222Rn.

Measure Setup

Place the sensor on the container in which has been inserted the thorium mantle. Thoron gas that is emitted by thorium slowly accumulates in the bowl and then fill in about ten minutes the ionization chamber.

Sensor : Ion Chamber Result : 200 Bq/m³

📓 Theremino Ge	iger - V5,2	
File Tools	Sensor typ	e Language Help About
Save image	Run 💑	Start new measure 🛃
Operation Option	ne Loge	Radiation plot (pCl/1) 2015/07/03 18:18:12
Radiation valu	ies	
pCi/l	33.12	
8q/m3	895	2 manues
Error range	83 %	1000
Counts		
CPS	1.215	
CPM	72.87	
Total counts	24	IW III III III III III III III III III
Total seconds	20	
Controls		
FIR Seconds	20	10
Scrol speed	50	
Plot scale	1.0	
Show candiestic	is (Ban)	
		0.1
		9.01

Sensor : Ion Chamber Result: 900 Bq/m³

Thoron decay measurement

Using the setup described in the preceding pages the decay of thoron has been measured. We have put the mantles inside a bowl, on which the ion chamber has been settled in vertical position so that the thoron that is released from the thorium enter the ion chamber.

After about ten minutes the chamber is full of thoron and the counting rate should stabilize.

At this point the ion chamber is moved and a new measurement is started. The thoron inside the chamber, being very heavy, does not escape and then decays with its specific half-life.

In the chart below you can see qualitatively that decay is linear on logarithmic scales and therefore exponential on a linear scale. Can be estimated a half-life of about 1 minute.

Sensor : Ion Chamber Result: thoron decay

Half-life calculation

The exact moment when an unstable atom will decay into a more stable is considered random and unpredictable. What you can do, given a sample of a particular isotope, is to note that the number of decays follows a precise statistical law . The number of decays that are expected to happen in an interval dt is proportional to the number N of atoms present . This law can be described by the differential equation of the first order (in which λ is the decay constant) :

$$\dot{N} = -\lambda N$$

With this solution (*e* is the Euler number):

$$N(t) = N_0 e^{-\lambda t}$$

Which is typical of an exponential decay. It should be noted that this is only an approximate solution, first because it represents a continuous function, while the physical real event assumes discrete values, since it describes a random process only statistically true. However, since in the majority of cases N is extremely large, the function provides a very good approximation.

In addition to the decay constant " λ " radioactive decay is characterized by another constant called average life. Each atom lasts for a precise time interval before decaying and the average is just the arithmetic average of the lifetimes of all atoms of the same species . The average life is represented by the symbol τ , linked to λ by :

$$\tau = \frac{1}{\lambda}$$

Another parameter often used to describe a radioactive decay is given by the half-life or $t_{1/2}$. Given a sample of a particular radionuclide, the half-life tells us the time interval after a number of atoms equal to half of the total will be decayed, and is linked to the average life from the relation:

$$t_{1/2} = \frac{\ln 2}{\lambda}$$

These relationships allow us to see that many of the radioactive substances in nature are now expired, and therefore are no longer found in nature, but can only be produced artificially. To get an idea of the orders of magnitude, we can say that the average life of the various radionuclides may vary from 10^9 years till to 10^{-6} seconds.

Decay measurement data

Measurement data were included in the chart below in which it was made an interpolation with an exponential function .

From the interpolation exponential equation is obtained the following value for the decay time constant :

$\lambda = 0.012$

The following value for the half-life

$$t_{1/2} = \frac{\ln 2}{\lambda} = 57.8 \, sec$$