Home / English Posts

English Posts

Alpha Particles Range & Bragg Curve

The energy of alpha particles varies, with higher energy alpha particles being emitted from larger nuclei, but most alpha particles have energies of between 3 and 7 MeV, corresponding to extremely long and extremely short half-lives of alpha-emitting nuclides, respectively. This energy is a substantial amount of energy for a single …

Read More »

Spectral Lines Broadening

In the Atomic Spectroscopy post, we have learned (and experimented) that the emission spectrum of a chemical element is made up of discrete lines corresponding to the electromagnetic radiation emitted by the electrons of its atoms when they “drop” from a higher energy state to one of less energy. For each transition …

Read More »

Laser & Diffraction Grating

With the new Laser He-Ne (described in the Laser He-Ne post), you can easily test the physical properties of the diffraction grating. We propose, in particular, to measure the pitch of the grating through the measurement of the diffraction produced on the He-Ne laser beam. The Diffraction Grating When a …

Read More »

“Soft” and “Hard” Components of Cosmic Rays

Cosmic rays are energetic particles coming from outer space. The Earth and any other spatial body, as well as satellites and astronauts in orbit, are exposed to cosmic rays. The cosmic rays nature is very diverse (the kinetic energy of the particles of cosmic rays is distributed over fourteen orders of magnitude), as …

Read More »

Cosmic Rays & Statistics

The arrival and detection of cosmic rays in a detector is a random process and as such follows a distribution law characteristic of random events. Particularly when the expected number of events in a given time interval is small, then this number should follow Poisson’s statistical distribution. Poisson Distribution Poisson …

Read More »

Laser He-Ne

Finally at PhysicsOpenLab the Helium–Neon Laser has arrived ! A helium–neon laser or HeNe laser, is a type of gas laser whose gain medium consists of a mixture of 85% helium and 15% neon inside of a small bore capillary tube, usually excited by a DC electrical discharge. The best-known and most widely used HeNe laser operates at …

Read More »

Scintillation Crystals

At PhysicsOpenLab we use many scintillation crystals, mainly coupled with PMTs or SiPMS, to detect particles or radiation. In this post we want to describe the scintillation crystals we normally use in our detectors. A scintillator is a material that exhibits scintillation (the property of luminescence), when excited by ionizing radiation. Luminescent materials, when struck by …

Read More »

Bremsstrahlung Radiation

Introduction Bremsstrahlung (from bremsen “to brake” and Strahlung “radiation”; i.e., “braking radiation” or “deceleration radiation”) is electromagnetic radiation produced by the deceleration of a charged particle when deflected by another charged particle, typically an electron by an atomic nucleus (as depicted in the image above). The moving particle loses kinetic energy, which is converted into a photon, thus satisfying the law of conservation of energy. …

Read More »

X Ray Proportional Counter

The proportional counter is a type of gaseous ionization detector device used to measure particles of ionizing radiation. The key feature is its ability to measure the energy of incident radiation, by producing a detector output that is proportional to the radiation energy; hence the detector’s name. It is widely used where energy levels of incident radiation must be known, such …

Read More »

Analysis of a Fukushima Soil Sample

Fukushima Daiichi nuclear disaster The Fukushima Daiichi nuclear disaster  was an energy accident at the Fukushima Daiichi Nuclear Power Plant in Fukushima, initiated primarily by the tsunami following the Tōhoku earthquake on 11 March 2011. Immediately after the earthquake, the active reactors automatically shut down their sustained fission reactions. However, the tsunami disabled the emergency generators that would have provided power to control and operate …

Read More »